Félrevezetnek?

Merre megy az önvezető autó? Oda visz, ahova menni akarok, vagy új célokat keres magának?

Nézhetnénk ezt a kérdést az életcélok szempontjából is, hiszen egy intelligens jármű akár abban is segíthetne, hogy kiszakadjunk a napi mókuskerékből, és valami újat és jót kezdjünk magunkkal.

Nézhetnénk, de most inkább maradok annál, hogy valóban oda akarunk eljutni, ahova indultunk.

 

Sokszor írtam már (legutóbb fél éve) az „okos” és az önvezető autókról:

Az elmúlt hónapokban is voltak újabb fejlemények, ezek egy részéről lesz szó most.

Az első egy alapos és segítőkész cikk arról, hogy a buta autóból olcsón és egyszerűen lehet okosautót csinálni. A megoldás középpontjában egy Android alapú központi egység (Ownice C300 OL-8992T) van. Ez az autóban már meglévő CAN buszra csatlakozik.

Mi ez a CAN? Az autó összes elektronikus részegységét egymással összekapcsoló kommunikációs hálózat. A szabványa (ISO 11898) 1993-ból származik. Akkoriban fel sem merült az autón belüli kommunikációban a titkosítás és az azonosítás kérdése – hiszen miért is lenne ilyesmikre szükség? Azóta sok kiegészítése született a szabványnak (legutóbb 2015-ben), de a biztonság nem került bele. Azért hasznos a szabványosítás, mert így az autógyártók sok beszállító részegységeit tudják beépíteni, és nincs probléma a közöttük való kommunikációban. Milyen részegységekről van szó? Néhány példa: kormánymű (szervo), sebességváltó, fékrásegítő, ABS, légzsák, tempomat, ablakemelő, rádió, zenelejátszó, motoros tükör, ablaktörlő és még sok-sok más. Ezeket mind elektronika vezérli. Ez a vezérlés sokszor automatikus, és érzékelőkön alapszik (pl.: sebesség, a kormány állása, az autó dőlésszöge, a motor hőmérséklete, biztonsági öv csatja, parkoló radar, esőérzékelő).

Ezt az egészet a CAN köti össze, és – ahogy előbb írtam – nyoma sincs biztonságnak, minden elem elhiszi az információt, amit kap, és elhiszi, hogy az a másik elem küldte, amelyik feladóként szerepel benne.

Itt jön be a képbe egy újonnan felfedezett (de évtizedek óta létező) támadási lehetőség. A CAN úgy működik, hogy azt az elemet, amelyik sok hibás adatcsomagot küld, egyszerűen kikapcsolja (hiszen elromlott). Ha valaki be tud jutni ebbe a hálózatba, akkor például az ABS vagy a kormányszervo nevében tud ilyen hibás adatokat küldeni, és így elérheti, hogy a rendszer lekapcsolja a hibás egységet. Ki próbált egy modern autót úgy kormányozni vagy fékezni, hogy a szervo vagy a fékrásegítő nem működött? Alig-alig lehetséges!

Ahogy írtam, 1993-ban még nem tűnt reális veszélynek az autó belső hálózatának megtámadása. Azóta a helyzet megváltozott. Már nem kell fizikailag hozzáférni az autóhoz, és bekötni valamit a belső hálózatába (pl. rádugni a kiépített szervízcsatlakozóra), hanem interneten keresztül is meg lehet ezt tenni.

Ez nem elméleti lehetőség! Két éve mutatták be élesben (autópályán haladó Jeep Cherokee volt az áldozat). A támadó az autó minden lényeges funkcióját a kezébe tudta venni. Hogyan? A szórakoztató elektronikai rendszeren keresztül jutott be, mert az rendelkezik internetkapcsolattal. Sajnos minden rá van kötve a CAN-ra, és elég egy kis lyuk a zenelejátszóban, hogy elérjék a gázt vagy a féket. Ez a 2015-ös támadás csak az adott autó belső rendszereinek alapos ismeretében volt kivitelezhető.

A most feltárt lehetőség sokkal egyszerűbb. Azon alapszik, hogy a CAN szabványos. Nem feltétlenül fogja tudni vezérelni a támadó a féket vagy a kormányt, de kiiktatni tudja. Ez éppen elég gáz!

Erről rögtön eszembe jutott, amit a magyar AImotive cégtől hallottam nemrégiben. Azt mondták, hogy az autóban három külön hálózatnak kellene lennie: az egyik az infrastruktúra (fék, gáz, kormány és minden más, amitől megy az autó), a másik a szórakoztató elektronika, a harmadik az önvezető funkció. Az első és a harmadik között van kapcsolat (de szabályozott és ellenőrzött), a második teljesen független a többitől. Ezzel már ki is lenne védve a legtöbb támadás! Ez néhány éven belül bevezethető lenne, és a jövőben gyártandó autók biztonságosabbak lennének. Sajnos a már meglévőkbe aligha lehet ezt a módosítást beletenni.

Az eddigieknek még minden modern autóra vonatkoztak, nem sok közük volt az önvezető autókhoz. Az amerikai haditengerészet mostanában reflektorfényt kapott balesetsorozata kapcsán köztudott lett, hogy a navigációban használt GPS rendszer mennyire könnyen támadható. Azt régen tudni lehetett (volna), hogy zavarható a jel, vagyis működésképtelenné lehet tenni a navigációs rendszert, ha ugyanazon a frekvencián erős jelet sugárzunk. Ezt most már könnyen meg is lehet tenni egy drón felhasználásával.

A hírek szerint valaki (állítólag az orosz hadsereg) már teszteli azt a technológiát, amivel hamisítani lehet a jeleket, vagyis azt hiszi a jármű (az ember), hogy valahol máshol van. Június 22-24-én a jelentések szerint egy időben és egy helyen legalább 20 hajó navigációs rendszere tévedett nagyot – és ezt orosz GPS-támadásnak tulajdonítják. Ha ez valóság, és elérhető lesz mások számára is, akkor a GPS-szel navigáló önvezető autók is bajba kerülhetnek.

Meg kell mondanom, hogy már ez előtt a támadás előtt, amikor még fogalmam sem volt arról, hogy a műholdak jele meghamisítható, gyanakodva tekintettem a LIDAR technológiára az önvezető autókban. Mi az a LIDAR? Lézeres radar (light + radar), ami nagyon pontos háromdimenziós képet tud előállítani a környezetünkről, amit aztán az autó összevet a korábban letöltött szintén háromdimenziós térképpel és a GPS-es helymeghatározással, majd ezek alapján navigál és vezet. Mi nem tetszett ebben? Az első az, hogy a LIDAR nagyon drága, tízmilliókba kerül. (Ez sokat javulhat, ha egyszerűsítenek a technológián és az majd tömegtermelésbe kerül.) A másik aggályom a térkép használata. Szerintem a térkép navigációra való, és a vezetés maga nem függhet a térkép meglététől vagy pontosságától, és a helymeghatározás pontosságától sem.

Szóval, még mindig azt gondolom, hogy a vizuális tájékozódás lesz jó darabig a járható út. Ehhez elég néhány kamera és mellé okos és gyors szoftver. Az valószínűleg eltart egy darabig, amíg a képelemző szoftver olyan gyors és okos lesz, mint egy ember, de bíztatóak az eddigi eredmények. Érdekes videókat publikáltak, amik jól mutatják a képességeit.

Ha majd egyre több lesz az önvezető autó, az nyilván együtt jár azzal is, hogy a mindennapokban az autó egyre inkább arra szolgál majd, hogy eljussunk valahova, és csökken „szeretett tárgy” funkciója. Ebben egy nagy lépés lesz, amikor a sok „as-a-Service” közé belép az önvezető autó mint szolgáltatás. Vagyis nem csak hogy nem fogjuk vezetni az autót, de a tulajdonunk se lesz majd. Tulajdonképpen ez sem új, hiszen a taxi is ilyen autó, de várhatóan megjelenik az önvezető autó mint külön szolgáltatás, és arra számítok, hogy a nagy játékosok között lesznek a ma feltörekvő gyártók. Nem tudom, hogy vajon az autókölcsönzők milyen sikerrel ugranak rá erre az új piacra, és mekkora szeletet tudnak majd kihasítani belőle. Vannak már jelei annak, hogy a kölcsönzők és a fejlesztők összefognak (Hertz és Apple, Avis és Waymo (Google)), meglátjuk, mi lesz az eredmény.

Egy hét múlva lesz egy konferencia San Franciscoban, ami kifejezetten az önvezető autó mint szolgáltatás témáról szól majd. A beharangozó utolsó mondata érdekes jövőt vetít elénk: „The surge in self driving technology and the connected user will allow cars to provide a service entirely customized to the person riding it, their mood, time of day or even their destination”. Tőlünk (utasoktól), akár a hangulatunktól is függhet majd, hogy milyen autó jön értünk. Érdekes! Ez még odébb van, de nem lehetetlen…

Erről eszembe jutott egy tavaszi eszmefuttatásom, amiben a „Washing machine-as-a-Service” is előkerült. Biztos az is jön majd, de az autó nagyobb üzletnek tűnik…

A gép tanul helyettünk?

Mit tesz velünk, a munkánkkal és az életünkkel a mesterséges intelligencia?

Pontosabban, nem maga a mesterséges intelligencia teszi majd, hanem az, ahogy felhasználjuk. Ez is egy általános célú technológia, ami vélhetőleg hasonló nagyságrendű változásokat hoz majd az életünkben, mint korábban az általános célú technológiák (gőzgép, elektromosság, belső égésű motor). Általában mesterséges intelligenciáról beszélünk, és ez a terület annyira szerteágazó, hogy nem is mindig tiszta és világos, hogy részére gondolunk.

Vannak kísérletek a mesterséges intelligencia kereteinek és határainak megalkotására. Az egyik érdekes próbálkozás az „Asimolar AI Principles” nevet viseli. Ez egy 23 alapelvből álló lista, amit januárban állított össze sok okos ember egy konferencián, és azóta több ezren csatlakoztak hozzájuk. Én úgy látom, hogy ezek inkább óhajok, mintsem várhatóan betartható szabályok. Emlékezzünk arra, hogy Asimov végtelenül egyszerű három törvényét sem sikerült a robotoknak betartaniuk! Egy korábbi írásomban egy kicsit részletesebben belementem ebbe a témába: Mesterségesen etikus.

Egy pozitív megközelítés szerint a mesterséges intelligencia valójában felszabadítja az embert a „robot”, az unalmas, gépies munka alól. Az ilyet átveszi a gép, és az embernek megmarad az alkotó tevékenység. Úgy érzem, hogy ez az optimizmus nem teljesen indokolt, mert már látszik az is, hogy a gépek nagyon bonyolult döntések meghozatalát is kezdik átvenni az emberektől. Valójában még mindig az ember hozza a döntést, azonban a gép tesz javaslatot a döntésre. Az a gép, amelyik egy pillanat alatt elemzett annyi információt, amennyit az ember csak napok vagy hetek alatt nézhetett volna át. Ha az ember utána akarna nézni annak, hogy a gép jól következtetett-e, akkor elveszítené a gyors döntés előnyét. A gyors döntésen emberi életek vagy üzleti eredmények múlhatnak! Ezért valószínűleg általában el fogja fogadni a gép javaslatát. A géppel együtt dolgozó emberek tudása szép lassan elkopik majd, így egyre kevésbé fognak tudni beleszólni a döntésbe, vagyis teljesen alárendelik magukat a gép programjának.

Az itt az érdekes, hogy nem is a gép programjáról van szó. A programot ember írja, és elvileg ismeri a működését. (Azért csak „elvileg”, mert a valóságban ezek a bonyolult programok tele lehetnek hibákkal – akárcsak a sokkal egyszerűbbek.) Azonban itt nem programról van szó, mert a lényeg a gépi tanulás (machine learning, ML).

A gépi tanulás azért fontos, mert a bonyolult kérdésekben hozott döntési folyamatainkat nem tudjuk algoritmusba önteni. Van ott intuíció, asszociáció, vagy valami más, amit nem tudunk precízen elmagyarázni. Így számítógépes program formájában sem tudjuk leírni, vagyis nem tudjuk a szokásos módon automatizálni. Itt lép be a gépi tanulás. Miben más a gépi tanulás, mint ahogy az ember tanul? Tulajdonképpen nagyon hasonlít ahhoz, ahogy a kisgyerek tanul – példákból, mások tapasztalatából.

A vezető nélküli autózás egyik fejlesztője, a magyar AImotive cég megtanítja a szoftverét az utcán előforduló „objektumok” (autók, gyalogosok, motorkerékpárok, biciklik, tereptárgyak) felismerésére és megkülönböztetésére. Ezt nem úgy teszi, hogy szabályokat táplál a gépbe, hanem videók tömkelegét mutatja be a gépnek, és ezeken a videókon emberek kategorizálják az objektumokat. Az Udacity nevű cég egyik vezetője a kereskedők és a vevők online beszélgetéseit elemezte, és „sikeres” – „sikertelen” címkékkel látta el a beszélgetéseket. Ebből kiderült, hogy mik a jó és mik a rossz válaszok egy-egy szituációban. A WorkFusion háttérfolyamatok optimalizálását végzi (számlák kezelését és nagy összegű pénzügyi tranzakciókat). Itt sem elég a szabályokat „beleönteni” a gépbe. Sokkal hatékonyabb az, ha a gép megfigyeli az emberek munkáját, és „felfedezi” az összefüggéseket, megtanulja, hogy mik voltak a jó és a rossz döntések. Szóval, más példájából tanul, akárcsak a gyerek.

Egyes esetekben az a kiűzött cél, hogy a gép teljesen átvegye az emberi tevékenységet, és azt jobban és gyorsabban csinálja. Ez a cél a vezető nélküli autók esetében, amikben végül nem is lesz se kormány, se pedál. Az előbb említett kereskedelmi rendszerben nem volt cél az ember „kiküszöbölése”. A gép csak figyeli a kereskedő és a vevő beszélgetését, és tanácsokat ad. Ezzel 58%-os javulást értek el a kereskedők munkájában. Hasonló folyamat zajlik a daganatos betegségek diagnózisában is: a képfelismerő rendszer megszabadítja az onkológus szakorvost a sejtek osztályozásától, a gép tudja megkülönböztetni a beteg és az egészséges sejteket egymástól. Az orvos a beteggel való kommunikációra és a magasabb szintű elemzésre több időt tud fordítani. Értékesebb munkát tud végezni.

Amikor a gép korábbi példákból tanul, ezekből építi fel a tudását, majd a tudása alapján dönt, az emberi asszociációra valamelyest hasonló módon „gondolkodik”. Az a helyzet áll elő, hogy a gép nem tudja egyszerűen elmagyarázni, megindokolni a döntését, ha az ember kolléga megkérdezi, hogy miért ezt vagy azt a döntést javasolta. Ez azt is jelenti, hogy az ember (aki a végső döntést meghozza, és a felelősséget viseli) nem igazán tudja ellenőrizni a javaslatot.

A tanulás során felhasznált adatokban lehetnek elfogult döntések eredményei. Ebben az esetben a gép is hasonlóan elfogult lesz. Ezt a lehetőséget nagyon jól (és szélsőségesen) illusztrálta a Microsoft Tay nevű twittelő robotjának az esete.

A nagyon bonyolult elemzések eredményét az ember nem fogja tudni megérteni, ellenőrizni, jóváhagyni. Tulajdonképpen ez sem jövő idő már. Az AlphaGo gép, ami megverte a legjobb Go játékost, olyanokat lépett, amit az emberi ellenfele fel se tudott fogni, nem értette a lépések lényegét és célját. Ha a szakterület legjobb elméje sem érti a gépet, akkor egy átlagosan jó szakember, hogyan fogja megérteni és elfogadni vagy elutasítani a gép döntési javaslatát?

A tanulás módszeréből adódik, hogy a gép statisztikai alapon dönt. Ez sokszor jó megoldás, ha rengeteg esetben kell döntést hozni, és a cél az összességében jó döntés, de egy-egy tévedés belefér. Ezt nyilván nem akarjuk vállalni, amikor emberéletekről van szó. De mégis vállaljuk, ha orvosi diagnosztikában és terápiában hoznak döntéseket a gépek. Itt végtelenül nem egyszerű a helyzet, hiszen a gyorsabb, és az esetek nagy részében jó döntést kell a sokkal-sokkal lassabb döntéssel összevetni. A lassabb döntés is emberéletekbe kerülhet!

A hibás döntéseket nehéz lesz felismerni, ha nem látjuk át, hogy mi vezetett a döntéshez. Ha nekünk napokba kerülne az adatokat elemezni, vajon várunk annyi időt, vagy szabad folyást engedünk a gép javaslatának?

Itt most eszembe jutott a korábban említett 23 alapelv egyike: a jogi döntésekben részt vevő önálló rendszerek adjanak megfelelő és emberek által ellenőrizhető magyarázatot a döntésükre. Ez tényleg jól hangzik, de az egy pillanat alatt meghozott döntést vajon hány ember, hány hétig fogja elemezni, és megérti-e majd?

Azt is mondhatnánk, hogy a cél nem az, hogy minden döntés hibátlan legyen, hanem legalább olyan jó legyen, mint az emberek döntései. Nekünk magunknak is vannak előítéleteink, hibázunk, és nem mindig tudjuk rendesen elmagyarázni a döntéseinket. Ha a gép kicsivel kevesebbet hibázik, akkor már nyertünk! Nyertünk? Lehet, hogy túl sokat tudok az informatikáról…? Az nyugtalanít, hogy nem csak tévedés lehet a rossz döntések mögött, hanem valakinek a szándékossága is. Ez nem olyan különös, embereknél is előfordul a szándékos rosszakarat. A veszélyt abban látom, hogy a számítógépet „istenítjük”, elfogadjuk helyesnek azt, ami a gépből kijön. Nem kellene…

Nos, Kedves Olvasó, szerinted ez az írás pozitív vagy negatív lett? Örömmel vagy aggodalommal várod ezt a szép, új jövőt (ami már jelentős részben jelen)?

Hová vezet ez?

Nem mindig látható a robot! Van, amikor elbújik, nem úgy mint dr. Robot, akiről a múlt héten írtam.

aimotive-4-930x698Nagyon örültem, hogy az NJSZT 10. Digitális Esélyegyenlőség konferenciáján az előadók között volt Takács Árpád az AImotive kutatója is. Miért? Elég sokat olvastam, sőt írtam is a cégről (akkor még AdasWorks volt a neve), amikor az önvezető autókkal foglalkoztam. Kik ők és mit csinálnak? Viszonylag fiatal magyar cég (2009-ig nyúlik vissza a történetük), ami gyorsan betört az autóiparba, fontos elektronikai beszállító lett. Az önvezető autókhoz mesterséges intelligencián alapuló szoftvereket fejlesztenek, beleértve környezet felismerését, a helymeghatározást, a mozgás megtervezését, és az autó alacsony szintű vezérlését. Főleg kamerákat használnak, de szükség szerint radarra és ultrahangra is támaszkodnak. A koncepciójuk megvalósításának fontos eleme az olcsó és nagy teljesítményű GPU, amire sok kamerát lehet rákötni, és képes a nagy felbontású videókat valós időben feldolgozni.

Takács Árpád novemberi előadásának címével, „A jövő luxusa: hús-vér sofőrök?”, adta meg az alaphangot. Megtudtam tőle, hogy a közlekedési balesetek jelentik a nem betegséghez köthető leggyakoribb halálozási okot, évente 1,3 millió ember hal meg így. Ez tényleg óriási szám! Olyan, mintha naponta tíz nagy utasszállító repülő összes utasa meghalna. Ha más nem, ez is elég motiváció lehet arra, hogy megokosítsuk az autókat.

A cél az ötös szintű önvezető autó, ami azt jelenti, hogy az autó minden közlekedési helyzetben és mindenféle úton legalább olyan jól teljesít, mintha ember vezetné. A fenti statisztika ismeretében nem elég annyira jól vezetnie, mint az ember teszi, hanem még jobban is kell!

sae-automated-levels-table

Hogy érjük ez el? Nem úgy, hogy még tovább és tovább javítgatjuk a jelenlegi autókat (amikbe már tényleg rengeteg biztonsági megoldás került be), hanem valami nagyot és újat kell lépni – ez lesz a mesterséges intelligencia. (Ezért is változtatták meg a cégük nevét, mert már nem a vezetést segítő ADAS rendszerekkel, hanem a mesterséges intelligenciával foglalkoznak.) Ehhez nem csak a technológiában, hanem a szabályozásban is nagyot kell lépni, mert ma Európában még az 1969-es Bécsi Egyezmény van hatályban, ami szerint még tesztelni se lehetne ilyen autókat. (Összehasonlításul: az USA 14 államában már szabályozták az önvezető autók tesztelését.)

Az, hogy nem a meglévő autók javítgatása a cél, látszik abból is, hogy a nagy autógyártók mellett fontos kulcsszereplők lettek olyan cégek is, amelyek korábban az autógyártás közelében sem jártak, pl.: NuTonomy, Delphi, MobilEye, Baidu, Google, Über, Apple. (Tavaly ősszel írtam egy részükről.) Az alábbi frissebb ábrán a legalább hatszáz játékosból a 125 legfontosabb jelenik csak meg. Hozzátehetjük, hogy állandó itt a változás, gyorsan avulnak el az ilyen összeállítások.

autonomous-drive_vision_systems_intelligence_infographic

A lényeg az – mondja Takács Árpád –, hogy a tetején lévő integrátoroknak mindenképpen mesterséges intelligenciához kell folyamodniuk, de ez utóbbival sokkal kevesebben foglalkoznak! Az autógyártók közül szinte senki. Miért? Az egyik alapvető korlátjuk az, hogy sok-sok beszállító elemeit építik be a járművekbe, akár 150 processzor is lehet egy autóban! Meglehetősen reménytelen vállalkozás lenne egy ilyen platformra mesterséges intelligenciát telepíteni.

vision_systems_intelligence_ai_pr_infographic_new

Az önvezető autókban kamerákon kívül még LIDAR és radar is szokott lenni. Az utóbbi olcsó, de a képe rossz felbontású, ezért elsődleges szenzorként nem használható. A LIDAR alkalmas a távolság nagyon pontos megmérésére, így 3 dimenziós képet is elő tud állítani. Egy előre elkészített 3D térképpel összekapcsolva, centiméteres pontosságú helymeghatározást tesz lehetővé. Az ára viszont elképesztő (kb. 20 millió forintba kerül). Szintén korlátozza a használatát az is, hogy az alapul szolgáló térképet az autóban kell tárolni, és folyamatosan frissíteni kell.

A kamerák az emberhez hasonlóan látnak, és jól használhatók lehetnek, de sokáig kívül estek a tervezők érdeklődési körén, mert nem volt módszerük a hihetetlen adatmennyiség gyors elemzésére és a tárgyak, emberek felismerésére. A képfeldolgozásban rohamléptekkel fejlődik a mesterséges intelligencia használata. Más alkalmazási területekről tudhatjuk, hogy viszonylag rossz minőségű kültéri kamerák felvételein is fel tudják ismerni az embereket. Más alkalmazásokban pedig az emberek arca alapján már a gép is sok mindent meg tud mondani (pl.: nem, életkor, hangulat – persze ez egyik sem akkora csoda, mi emberek már régen tudjuk ezt).

Mi az AImotive megoldási módszere? Az autóvezetés négy fontos lépéséhez kell megtalálni a megfelelő eszközöket. Melyek ezek a lépések?

  1. Felismerés: fel kell mérnünk a környezetünket, azonosítanunk kell az objektumokat (autó, fa, gyalogos, kerékpáros, stb.)
  2. Lokalizáció: el kell helyeznünk magunkat ebben a térben
  3. Döntés: felmérni, hogy mi fog történni, és erre hogyan reagálunk
  4. Irányítás: az autó a megtervezett módon haladjon

Ehhez sok szoftverre van szükség. Az első lépésben a sok szenzorból érkezett adatokat össze kell vetni, együtt kell értelmezni. A kamerák képei együtt használhatók például a tárgyak távolságának vagy mozgási sebességének meghatározására. Ezt követően ismeri fel majd az autó az objektumokat. A felismerést sok-sok valós életből vett kép alapján lehet megtanítani az autóban futó rendszernek. Ez a videó ad képet arról, hogy miképpen azonosítja a képfeldolgozó rendszer az autókat, gyalogosokat (különböző színekkel jelöli be és különíti el a háttértől őket, hogy jobban lássuk): https://youtu.be/Nj1UQ-L-Ux0?t=6m11s Nekem nagyon tetszik!

Az előadásban még van néhány érdekes példa, érdemes megnézni őket!

Újdonság volt számomra, hogy ezt a felismerési képességet emberektől tanulja az autó. Rengeteg valódi képet dolgoznak fel (annotálnak) emberek, azaz bejelölik rajtuk az összes objektumot, amit majd a helyzetelemzés és a döntés során fel kell ismernie a mesterséges intelligencia szoftvernek.

Takács Árpád az előadása végén felhívta a figyelmünket néhány tévhitre az önvezető autóval kapcsolatban:

  • A mai vezetéstámogató rendszerekből nő majd ki
  • Azonnal kereskedelmi forgalomba kerül majd
  • Évtizedekre van még szükség.
  • Több százmillió km tesztelés kell majd
  • Ha-akkor szabályok alapján dönt majd az autó
  • Helyes morális döntéseket kell majd hoznia

Ez az utóbbi két téma egy-egy külön tanulmányt is megér…

Ez a cikk nagyrészt Takács Árpád előadása alapján készült, és felhasználtam hozzá saját olvasmányaimat és írásaimat is.

A dolgok és a mesterséges intelligencia kapcsolatáról (benne az önvezető autókról) elég sokat írtam már, ezek az írások az Összekapcsolt mindenség című oldalon is megtalálhatók.