Mesterségesen etikus

Mesterségesen etikus és humánus intelligencia. Ez a nagy közös cél. Megvalósul?

Tegnap én voltam az egyik fogás a Hitachi Data Systems üzleti reggelijén, és jó kedvvel, jó étvággyal fogyasztottak a jelenlévők. Szuper társaság jött össze, és inkább beszélgetés, mint előadás volt ez a másfél óra. Úgy láttam, hogy mindenkit érdekelt a téma, az „összekapcsolt mindenség”. Engem is arra ihletett, hogy – az ott megbeszéltekre is támaszkodva – részletesen kifejtsem egy-egy szegletét.

Blogom rendszeres olvasóim és azok, akik figyelik rövidebb írásaimat már tudják, hogy több mint egy éve elkezdtem beleásni magamat a számítási felhő, az internetre kapcsolt eszközök (IoT) és a mesterséges intelligencia egymással való kapcsolatába. Bár nem mindig világos és egyértelmű, hogy mit is értünk ezeken a fogalmakon, nagyjából sejtjük.

A három terület összekapcsolódására már sok példát láttunk, például az autózás, a logisztika és az egészségügy területén. A jövőt ebben a témában sem könnyű megjósolni, de a hivatásos jósok között nagy az egyetértés abban, hogy jelentős fejlemények vannak előttünk, és nem valami távoli jövőben, hanem idén és egy-két éven belül. Nem olyan nagy csoda egy ilyen jóslat, hiszen már elkezdtek megtörténni a jó és a rossz dolgok is. Az útjainkon futnak önmagukat vezető autók, az orvosi diagnosztikában és a gyógyításban is használják a „gondolkodó” gépet és a sok-sok „okos” kütyüt, az informatikai tevékenységek közül rengeteget automatizáltak már, a könyvelésben és a könyvvizsgálatban is egyre terjednek az ilyen megoldások, és megjelentek az emberekkel kommunikáló robotok is.

Ha már robotok: Asimov megalkotta a robotika három törvényét:

  1. A robotnak nem szabad kárt okoznia emberi lényben, vagy tétlenül tűrnie, hogy emberi lény bármilyen kárt szenvedjen.
  2. A robot engedelmeskedni tartozik az emberi lények utasításainak, kivéve, ha ezek az utasítások az első törvény előírásaiba ütköznének.
  3. A robot tartozik saját védelméről gondoskodni, amennyiben ez nem ütközik az első vagy második törvény bármelyikének előírásaiba.

Ha alaposan belegondolunk, már az első törvény is nehéz értelmezési feladatot ad egy robotnak (egy embernek is), de később kiderült, hogy nem is elégséges, mert nem csak az egyes emberre, hanem az emberiségre is gondolni kell. Ezért egészítette ki R. Daneel Olivaw egy nulladik törvénnyel a listát:

0. A robotnak nem szabad kárt okoznia az emberiségben, vagy tétlenül tűrnie, hogy az emberiség bármilyen kárt szenvedjen.

A többi törvényt kiegészítette a nulladik megsértésének tilalmával is. Na, ezt még nehezebb értelmezni, volt robot, amelyiknek az agya le is olvadt miközben a feladat megoldásával küzdött. Olivaw végül tudta értelmezni és alkalmazni ezt az új törvényt, ami miatt kárt is kellett okoznia emberben. (Ő robot volt, de felül tudott emelkedni robot mivoltán az emberiség érdekében.)

Ez „csak” fantasztikus irodalom, de mi van a valóságban? Az eddig megalkotott robotokban, intelligens gépekben vannak ilyen törvények? Rakott beléjük ilyesmit valaki? Ha igen, ki hozta meg a döntést? Lehet olvasni etikai tanácsokról, de egyelőre nem sokat tudunk a működésükről és a döntéseikről (ha voltak olyanok). Közérdeklődésre tarthat számot a Google, hiszen az egyik legnagyobb játékos. Amikor három éve megvette a DeepMind céget, a megállapodás része volt egy ilyen szervezet felállítása, de még ma sem tudjuk, hogy kik a tagjai és csinált-e már valamit. Majd megtudjuk, amikor itt lesz az ideje… Más cégek nyitottabbak, de nem találtam sok konkrétumot.

Azokban az „intelligens” rendszerekben, amikről tudunk, még nincs sok valódi döntés a gép kezében, inkább csak elemzi a lehetőségeket, és a saját véleményével együtt felajánlja a döntést hozó embernek. Persze, az emberi történelemből tudjuk, hogy a szakértők rendszeresen megvezetik a döntéshozókat, így ebben az esetben sem zárhatjuk ki a lehetőséget.

A valódi döntéseket hozó rendszerekre való felkészülés ideje mégis eljött már, és sok okos ember össze is ült januárban, hogy megalkossa a mesterséges intelligencia alapelveit. Nem sikerült nekik az asimovihoz hasonló három-négy pontból álló listát készíteniük, de 23 pontba bele tudtak mindent foglalni, amit fontosnak tartottak. Elolvastam és igyekeztem megérteni az általuk megfogalmazott alapelveket, és egyet tudok érteni velük. Azonban úgy érzem, hogy ez csak óhajok listája, és rengeteg akadálya van annak, hogy teljesüljenek. Egy részükkel „csak” az a baj, hogy még soha, semmilyen technikai fejlesztés esetében nem teljesültek, és – ahogy én látom – a kapitalizmus körülményei között nem is teljesülhetnek. (Arról fogalmam sincs, hogy más társadalmi rendszerben teljesülhetnek-e.)

Mik ezek?

Az első öt pont a kutatás alapelveit szögezi le, közöttük olyanokat, mint a gazdasági, jogi, etikai és társadalomtudományi kutatások finanszírozását; együttműködést, bizalmat és átláthatóságot a kutatásban és a fejlesztésben; a biztonsági szabványok betartását a fejlesztési verseny során. Látott már valaki olyan műszaki fejlesztést, ahol ezeket betartották? Be lehet ezeket tartani?

A többiek hasonlóak, pl.: a jogi döntésekben részt vevő önálló rendszerek adjanak megfelelő és emberek által ellenőrizhető magyarázatot a döntésükre. Ez tényleg jól hangzik, de az egy pillanat alatt meghozott döntést vajon hány ember, hány hétig fogja elemezni, és megérti-e majd? Emlékezzünk arra, hogy a GO játék bajnoka nem értette meg az ellene játszó gép lépését! Az egy primitív masina volt a jövő önállóan gondolkodó és ítéletet hozó robotjához képest.

Hogy értsük azt, hogy az önálló gépnek a céljai és a viselkedése legyenek összhangban az emberi értékekkel? Ki definiálja az „emberi értékeket”? Kinek az értékrendje számít?

Azt írják elő, hogy az egész emberiség javára kell fordítani az előálló eredményeket, és a lehető legtöbb ember előnyére. Igen, valóban így kellene lennie! Hol van az a társadalmi-gazdasági rendszer, amiben bármit is az egész emberiség javára fordítottak?

Az sem lényegtelen kérdés, hogy mi a hierarchia a 23 alapelv között. Ha ütközés van, melyik erősebb? Ez egyáltalán nem lényegtelen kérdés! Már az eredeti három törvény esetében is óriási különbséget okoz a sorrendjük megváltoztatása.

Az a helyzet, hogy nem valami távoli jövőről beszélünk – a mesterséges intelligencia már most történik. Ahogy fent írtam, még csak döntés-előkészítést végez, de abban is nagy hatalom rejlik. Mi fogja vissza a fejlesztők (egy megtévedt fejlesztő) vagy a hekkerek kezét, amikor óriási hatalomhoz és pénzhez juthatnak a döntések befolyásolásával?

Mennyire közeli ez a jövő? Az IDC szerint 2019-re minden internetre kötött (IoT) eszköz mesterséges intelligenciával dolgozik majd. Minden, azaz 100%! Mik lesznek a legnagyobb területek? Orvosi diagnózis és kezelés, minőségmenedzsment a gyárakban. Mindkettőben óriási lehetőségek vannak hatalom és pénz vonatkozásában!

Ahogy ezeket írom, magamban azon töprengek, hogy mit látok rosszul. Tényleg reménytelen ezeknek az elveknek a betartása, vagy valamit nagyon elnéztem? Segítsen ki valaki!

Felhő, kütyük, okosság

Beborít mindent az okos felhő. Ma még ritkás a felhő és szerényen viselkedik, de ez nem sokáig lesz így…

Amikor három új technológia összefog majd, nagy dolgok jönnek létre. Mi ez a három dolog?

  1. Felhő, számítási felhő, „cloud”
  2. Internetre kapcsolt dolgok, dolgok internete, IoT
  3. Mesterséges intelligencia, okos gépek, cognitive computing
R. Daneel Olivaw

R. Daneel Olivaw

Erről a három jelenségről mindenki hallott már, jót, rosszat, ezt vagy azt. Többnyire gondolunk is róluk valamit, sokféle meghatározása van mindegyiknek, és néha viták is vannak arról, hogy mit jelentenek, új jelenségek-e egyáltalán. Egy gyors összefoglalásnak érdemes teret adni mielőtt belefogok abba, amit valójában mondani akarok. Miről lesz majd szó? Ennek a három „valaminek” az összekapcsolódása, együttműködése.

A számítási felhő sok különböző jelentéssel bír. Korombeli emberek megélték azt, amikor megjelent ez az elnevezés, és úgy éreztük, hogy mi már egy ideje valami ilyesmit csinálunk, csak éppen nem neveztük ezen a néven. Ma már mindenki használja a nyilvános felhőt a magánéletében, és legtöbben a munkájukban is. Mire is használjuk? Levelezés, naptár, közösségi hálók, kérdőívek, szavazások, publikálás, olvasás, képek és videók közzététele, film és zene letöltése, sport, egészség. Nem teljes a lista… Abban a témában, amiről most lesz szó, a nyilvános felhőnek az a tulajdonsága fontos, hogy olyan számítási kapacitást vagy informatikai képességet használhatunk rajta keresztül, aminek a birtoklása számunkra nem célszerű vagy egyenesen lehetetlen.

A dolgok internete lényegesen egyszerűbb fogalom. Arról van szó, hogy olyasmiket kapcsolunk a világhálóra, amiket régebben nem szoktunk, pl.: villanylámpát, inzulinpumpát, szívritmus-szabályozót, szobai termosztátot, hűtőgépet, mosógépet, autót, meteorológiai állomást. Miért tesszük ezt? Erről elég sokat írtam már, például Álom otthon és Otthon, édes otthon, valamint Okos felhő vagy köd?.

Na, a mesterséges intelligenciát nem ilyen könnyű megfogni. A három fogalom közül ez létezik a legrégebben, már a nyolcvanas években beszélgettem olyanokkal, akik ezt kutatták hazánkban. Az okos számítógépek és a cognitive computing is része a mesterséges intelligenciának, de ide tartozik a robotok egy része is. Azok, amiket az autógyárban láttam, messze vannak az intelligenciától, de Asimov robotjai, akik számára a robotika három törvényét előírta, már nagyon is intelligensek. A mai valóság szempontjából azt a gépet tekintem intelligensnek, amelyik tanulni képes, vagyis az ismereteit új módon tudja összekapcsolni annak érdekében, hogy új kérdéseket tudjon megválaszolni (olyanokat, amikre a választ nem táplálták bele).

Most, ahogy ígértem, ennek a három lehetőségnek az összekapcsolásáról lesz szó. Mi jöhet ki belőle? Kezdjük egy jövőbeli példával, a hálózatba kötött önvezető autóval! Ha már sok ilyen autó közlekedik az utakon, és ők jelentik a többséget, akkor lehetőség lesz a forgalom optimalizálására. Hogyan? Ismerjük minden jármű úti célját, így nem csak a pillanatnyi (pár perccel ezelőtti) forgalmi helyzetet tudjuk figyelembe venni, amikor a leggyorsabb útvonalat próbáljuk megtalálni, hanem jövőbe is láthatunk. Minden egyes jármű a többiek jövőbeli mozgását figyelembe véve közlekedhet. Ez nem csak az útvonalat jelenti, hanem a sebességet és a forgalmi sávot is. Ezt már ma is részben meg tudnák tenni az útvonaltervező szolgáltatások: a Waze figyelembe vehetné a korábban adott tanácsait és az általa „irányított” autók pillanatnyi mozgását, amikor nekem tervez, de ez így még elég gyenge lenne. Ha az összes jármű tervezett útvonalán kívül még a vezetésük is a szolgáltató központ kezében van, akkor nagyszerű eredményeket érhet el. Ez már mesterséges intelligencia? Nem vagyok biztos benne. Az biztos, hogy hihetetlen méretű optimalizálási feladatról van szó, aminek a közelítő megoldása is óriási számítási kapacitást igényelne. Ha nem irányítunk minden járművet, akkor inkább kell a mesterséges intelligencia. Miben? Az elmúlt hónapok, évek adatai, a jelenlegi és az előre jelzett időjárás, az üzletek nyitva tartása, nagy kiárusítások, meccsek, koncertek, és sok egyéb, a forgalmat befolyásoló tényező felhasználásával a többi autó mozgását is többé-kevésbé meg lehet jósolni. Ez már nem egyszerű adatfeldolgozás, hanem a tapasztalatok összegzését és az azokból való tanulást kívánja meg. Így már tekinthetjük mesterséges intelligenciának, és talán nem is a távoli jövő lehetősége. Mondok egy futurisztikusabbat: Ha az okos központi gép azt is tudja, hogy kinek mikorra kell odaérnie, mennyire sürgős az útja, akkor ezt is figyelembe veheti a tervezéskor. Mire gondolok? Látja a naptáramat, így tudja, hogy kényelmesen odaérek a tervezett megbeszélésre, nem kell annyira nyomni a gázt. Tudja, hogy a másik autós azért megy most (nem a megszokott időben) haza, mert otthon baj történt, segítenie kell. Honnan tudja? Hallotta a telefonbeszélgetést. Neki elsőbbséget tud biztosítani, el tudja takarítani előle a nagy forgalmat. Ahhoz, hogy a prioritásokat elemezze és a „nagyobb jót” szolgálja, már kell a mesterséges intelligencia, ezt nem esélyes előre megírt algoritmusokba önteni. Ez a példa tartalmazza mindhárom tényezőt: hálózatba kötött eszközt (autót), központi mesterséges intelligenciát, és közöttük lévő kapcsolatot (felhőt).

Nézzünk egy másik példát, ami szintén megvalósítható a mai eszközökkel. Ha a naptáramba beírok mindent, az okos elektronikus asszisztens tud szólni, hogy mikor induljak el, hogy időben odaérjek. Ezt már tegnap is tudta a Waze, ami nem csak útvonalat tervez, hanem még a pillanatnyi forgalmat is figyeli, és szükség szerint változtat a terven. Ha késésben vagyok, akár küldhetne is egy üzenetet, vagy felhívhatná nekem mobilon azt, akihez megyek, hogy én tudjak szabadkozni. Kapcsoljuk még hozzá a reggeli ébresztőt, a kávét, az autó bemelegítését! Már kezd összejönni az elektronikus komornyik. Ahhoz, hogy a ruhámat kikészítse, már robot is kell J Ebben még nincs mesterséges intelligencia, és felhő is csak alig van. Ha képes értelmezni a naptáramba írt dolgokat, valamint figyelni a munkámat, rájöhet, hogy ma előbb kell kelnem, mert még nem készültem fel teljesen arra a megbeszélésre vagy előadásra, amire indulok. Esetleg tudja, hogy este kirúgtam a hámból, és több idő (és több kávé) kell, hogy üzemképes legyek. Vagy azért kell előbb kelnem, mert az esti nagy zabálás után hosszabb reggeli edzésre van szükségem. A kávé koffeintartalmát az időjárási frontok szerint is beállíthatja. Ugyan ezek olyasmik, amiket akár egyesével beprogramozhatnék egy nagyon okos ébresztő órába, a valódi, kényelmes megoldáshoz kell a mesterséges intelligencia.

Az elektronikus komornyik felébresztett és útnak indított. A felhőn keresztül figyelte az utamat, módosította az útvonalamat, ha kellett a forgalom, baleset vagy más miatt. Beértem a munkahelyemre. Itt vajon milyen okos cuccokkal találkozom a szuper kollégáimon kívül? Az régi történet, hogy egyre több folyamatot automatizálnak, akár IT-üzemeltetésről, akár könyvelésről, akár könyvvizsgálatról van szó (hogy csak néhány területet említsek). Újabb irányzat a robotok alkalmazása ilyen munkakörökben. Ezek a robotok a számító gép előtt ülő, rutin tevékenységeket végző emberek helyett dolgoznak. Ez a robotic process automation (RPA): a szoftver a felhasználó helyére ül be, és ugyanazt, ugyanúgy csinálja. Ezt azért szeretik a cégek, mert nem kell a folyamatokon semmit se változtatni, így kisebb a kockázat. Ha esetleg nem válik be a robot, simán vissza tudja venni az ember a tevékenységet. Ezek a robotok pontosan tudják követni a szabályokat, jól kezelik a tipikus eseteket, sőt egy-egy kivételt is megoldanak. Ha valamivel nem boldogulnak, megkérdezik a tapasztalt kollégát, az embert. Ezen változtathat hamarosan a mesterséges intelligencia. A tanulni képes gép oldhatja meg a szokatlan, tapasztalatot igénylő problémákat. Meddig jutunk el ezen a területen és milyen gyorsan? Nem tudom. Ez leginkább attól függ, hogy mennyire találják fontosnak a nagy cégek, mikor lesz gazdaságosabb az intelligens robot használata. Az IBM úgy pozícionálja a Watsont, hogy az nem elveszi az emberek munkáját, hanem jó kolléga lesz, aki segít a pontosabb, hatékonyabb munkában. Meglátjuk…

Watsonnak fontos szerepet szánnak a sok milliárd érzékelő és egyéb kütyü által begyűjtött adatok feldolgozásában. Az IBM szerint ez megoldhatatlan lesz a hagyományos számítógépes programokkal. A 2020-ra jósolt 21 milliárd ilyen eszközből mennyi adat jön ki? Hogy gyűjtjük össze? Hol tároljuk? Ezek sem egyszerű kérdések, de „csak” mennyiségi kérdések. A minőségi ugrás akkor következik be, amikor fel is kell dolgozni ezt a sok adatot, és következtetéseket akarunk levonni, előrejelzéseket akarunk készíteni. Itt lép be az újfajta informatika, a „cognitive computing”, a gondolkozó gép – vagyis a Watson. Ebben nem előre beprogramozott algoritmusok döntenek, hanem tanul a fizikai világból, a gépektől és az emberektől is.

Elveszi a munkahelyeket az okos gép? Sajnos, a jelek arra mutatnak, hogy igen, sőt már el is kezdődött a folyamat. A mai, kevéssé (vagy semennyire se) okos gépek elkezdték betölteni a szakmunkások és az irodai dolgozók helyét. Erre Bőgel professzor hozott példákat és statisztikákat a novemberi NJSZT konferencián (Gondolkozom, tehát…?). Ez egyes esetekben még nem eredményez sokkal kevesebb munkahelyet, de alacsonyabban képzett (és rosszabbul fizetett) emberek is el tudják végezni a munkát a gépek segítségével.

Itt folytatom a jövő héten…

Kinek van tapasztalata ezen a téren? Tényleg elkezdték elvenni a gépek a munkahelyeket?